Saturday, May 26, 2018

Appendix_asymptotes


Asymptotes
Horizontal and vertical Asymptote from a rational expression


A function can have at the most one horizontal asymptote but many vertical asymptotes.(apparently this arises because of the way function is defined-not more than one f(x) value for any given 'x' value.(vertical line test property).A function can have both asymptotes.

Horizontal Aymptote: 'x'approaches + or - infinity but f(x)is generally bounded by the H-asymptote line.[x-horizontal axis, f(x)-vertical axis always]
Horizontal Asymptote.(example asymptote at y=1)
(mathsisfun.com)


Vertical Asymptote:'f(x)'approaches  infinity as x approaches a some value towards the origin .


Vertical Asymtote(example of asumptotes at y=-2,y=2 and x=0)
(study.com)




Video-Finding V.Asymptotes One more video




Squeeze Theorem-Nice graph-
(do not be scared by the graph-its simple once you know)

Common FunctionsFunctionDerivative
Constantc0
Linex1
 Constant multiple

Reciprocal
ax

1/x

 a

- 1/x2

Squarex22x
Square Root√x(1/2√x)
Exponentialexex
axaxln(a) 
Logarithmsln(x)1/x
loga(x)1 / (x ln(a))
Trigonometry (x is in radians)sin(x)cos(x)
cos(x)−sin(x)
tan(x)sec2(x)
Inverse Trigonometrysin-1(x)1/√(1−x2)
cos-1(x)−1/√(1−x2)
tan-1(x)
1/(1+x2)
RulesFunctionDerivative
Multiplication by constantcfcf’
Power Rulexnnxn−1
Sum Rulef + gf’ + g’
Difference Rulef - gf’ − g’
Product Rulefg f’ g + f g’ 
Quotient Rulef/g(f’ g − g’ f )/g2
Reciprocal Rule1/f−f’/f2
Chain Rule
(as "Composition of Functions")
f º g(f’ º g) × g’
Chain Rule (using ’ )f(g(x))f’(g(x))g’(x)
Chain Rule (using ddx )dydx = dydududx